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Abstract—In traditional audio captioning methods, a model
is usually trained in a fully supervised manner using a human-
annotated dataset containing audio-text pairs and then evaluated
on the test set from the same dataset. Such methods have
two limitations. First, these methods are often data-hungry
and require time-consuming and expensive human annotations
to obtain audio-text pairs. Second, these models often suffer
from performance degradation in cross-domain scenarios, i.e.,
when the input audio comes from a different domain than
the training set, and this issue has received little attention.
To address these issues, we propose a new zero-shot method
for audio captioning. Our method is built on the contrastive
language-audio pre-training (CLAP) model. During training, the
model reconstructs the ground-truth caption using the CLAP
text encoder. In the inference stage, the model generates text
descriptions from the CLAP audio embeddings of given audio
inputs. To enhance the ability of the model in transitioning from
text-to-text generation to audio-to-text generation, we propose to
use the mixed-augmentations-based soft prompt to learn more
robust latent representations, leveraging instance replacement
and embedding augmentation. Additionally, we introduce the
retrieval-based acoustic-aware hard prompt to improve the cross-
domain performance of the model by employing the domain-
agnostic label information of sound events. Extensive experiments
on AudioCaps and Clotho benchmarks show the effectiveness of
our proposed method, which outperforms other zero-shot audio
captioning approaches for in-domain scenarios and outperforms
the compared methods for cross-domain scenarios, underscoring
the generalization ability of our method. The code is publicly
available at https://github.com/XinMing0411/zero-shot-AAC.

Index Terms—Audio captioning, zero-shot, contrastive
language-audio pre-training, prompt engineering

I. INTRODUCTION

AUDIO captioning is a sophisticated audio-to-text cross-
modal translation task where a model is built to analyse

the content of an audio clip and articulate it using natural
language [1]–[5]. The generated captions encompass not only
basic descriptions of sound events and scenes but also high-
level semantic information, such as the relationships among
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Fig. 1. (a) The structure of the CLAP model. Through contrast learning,
CLAP maps the audio and text into the same semantic space. Grey triangles
and pentagons represent audio and text embeddings, respectively. (b) The
structure of the base zero-shot audio captioning model, where a language
decoder is trained for text reconstruction using text data based on the CLAP
text encoder. The CLAP audio encoder is combined with the language decoder
to generate captions during inference.

events and physical properties of sounds. Recent advancements
in audio captioning have significantly elevated the state-of-the-
art. Most existing methods rely on fully supervised training,
employing an encoder-decoder framework containing an audio
encoder and a language decoder. As a result, these approaches
are data-hungry and rely on a large amount of training data
with human-annotated text descriptions.

However, data scarcity is a substantial challenge for au-
dio captioning. The predominant audio captioning benchmark
datasets, Clotho [2] and AudioCaps [3] contain only 19k and
49k audio-caption pairs in their training sets, respectively.
These numbers pale in comparison to the vast datasets avail-
able for visual captioning (e.g., about 414K paired data in
the COCO Caption dataset [6]). To address this challenge,
several researchers have proposed zero-shot audio captioning
methods [7]–[10] that aim to generate audio captions without
relying on human-annotated audio-text pairs. For example,
Shaharabany et al. [7] introduced a training-free approach by
optimizing the context cache during text generation using clas-
sifier guidance. Salewski et al. [8] introduced another training-
free approach by reweighting the output probabilities based
on audio data. These training-free methods, however, tend to
exhibit limited performance in describing audio content.

Different from the training-free methods, the zero-shot
methods in [9], [10] are developed with text-only training,
by leveraging the Contrastive Language-Audio Pre-training
(CLAP) model [11] (as shown in Fig 1 (a)), which aligns
audio and text data in the embedding space. In these methods,

https://github.com/XinMing0411/zero-shot-AAC
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text-only data is utilized during training for learning the
text reconstruction models. During inference, the CLAP text
encoder is replaced by the CLAP audio encoder to generate the
descriptions of the input audio. However, the two modalities
are not well aligned, as the audio and text embeddings may
form separate clusters, leading to a gap between the text
embedding and its corresponding audio embedding [10], [12].
This gap impacts on the method’s generalisation performance,
particularly when the text-to-text generation model obtained
during training is transitioned to audio-to-text generation in
inference. To mitigate this, Deshmukh et al. [9] applied Gaus-
sian noise to perturb the CLAP embeddings during training.
However, with Gaussian noise, limited variations are added
to semantic representations due to its simple pattern, leading
to limited improvement of the model’s robustness to the
gap. Kouzelis and Katsouros [10] proposed a projection-based
decoding strategy that projects audio embeddings into the
text space through a weighted combination of all the text
embeddings from training. However, this method requires the
entire training set to be stored, leading to high demands in
memory and computational load during inference.

In addition, existing fully supervised and zero-shot meth-
ods typically consider the model performance solely in in-
domain scenarios, where the training and test sets come from
the same source. In contrast, cross-domain scenarios where
the training and test sets come from different sources have
received little attention, despite being more common in real-
world applications. These methods learn audio-to-text (fully
supervised) or text-to-text (zero-shot) mapping with limited in-
domain data, which may cause the model to overfit to dataset-
specific patterns, rather than learning generalizable audio
event features. As a result, they may suffer from significant
performance degradation in cross-domain scenarios and fail to
accurately describe out-of-domain audio clips.

To address the limitations of the existing zero-shot meth-
ods and improve their cross-domain performance, we pro-
pose a new zero-shot audio captioning method, involving
a mixed-augmentations-based soft prompt and a retrieval-
based acoustic-aware hard prompt. Here, “soft prompt” is a
technical term borrowed from Natural Language Processing
(NLP) [13], [14], referring to the continuous embeddings used
as inputs to a language model, while the “hard prompt” is
a term used to refer to static discrete textual prompts. In
our method, the soft prompt leverages a mixed-augmentations
strategy, incorporating instance replacement and embedding
augmentation to enhance the model’s generalization ability
and robustness. With instance replacement, the original input is
substituted with semantically similar but distinct text, introduc-
ing semantic perturbations that expose the model to a greater
variety of semantic representations. This helps the model learn
more robustly from inherent distributional variations in feature
representations and reduces the risk of overfitting to specific
patterns. With embedding augmentation, random perturbations
are added to the text embeddings, inspired by the Gaussian
noise injection concept presented in [9], [10], thus further
enhancing the model’s ability to transition smoothly from text-
to-text generation to audio-to-text generation.

Additionally, to further enhance the model’s cross-domain

performance, we present a hard prompting method, leveraging
an acoustic-aware retrieval strategy. More specifically, this
strategy guides the model in capturing and utilizing relevant
acoustic information across diverse domains by employing
domain-agnostic acoustic event labels, thereby leading to more
accurate captions. Through extensive experiments, we demon-
strate the superior performance of the proposed method, as
compared with the baseline zero-shot audio captioning meth-
ods for in-domain scenarios, and fully supervised and zero-
shot audio captioning methods for cross-domain scenarios.

II. RELATED WORK

In this section, we first give a brief overview of CLAP,
whose multimodal semantic space provides the foundation of
our proposed method. Then, we introduce traditional fully-
supervised audio captioning methods and recent zero-shot
audio captioning methods.

A. Contrastive Language-Audio Pre-training (CLAP)

CLAP [11], [15]–[17] utilizes contrastive learning to pre-
train language-audio models, which map both audio and text
into the same semantic space on large-scale audio-text pairs.
CLAP contains two encoders: an audio encoder and a text en-
coder. The audio encoder fAudio

clap (·) often uses well-performed
audio classification models, which can be convolutional neural
networks [18] or Transformers [19], as the backbone. The
text encoder fText

clap (·) is usually a pre-trained masked language
model (e.g., BERT [20], RoBERTa [21]). CLAP utilizes noisy
pairwise data for training based on the InfoNCE loss [22],
learning the alignment between text and audio embeddings in
a multimodal semantic space.

In this work, we use CLAP text encoder fText
clap (·) for text

reconstruction in the training stage. In the inference stage,
fText

clap (·) is replaced with the audio encoder fAudio
clap (·) to generate

descriptive text for a given audio.

B. Fully Supervised Audio Captioning

With the success of the Detection and Classification of
Acoustic Scenes and Events (DCASE) Challenges1, the flag-
ship international data challenge in acoustic scene and event
understanding [4], fully supervised audio captioning has seen
significant advancements. Most research on audio captioning
utilizes an audio encoder-language decoder framework trained
on human-annotated audio-text paired data. These studies
employed the audio encoder to extract embeddings of the
input audio clip A, which are then fed into the language
decoder to generate corresponding descriptive caption T . Mei
et al. [23] proposed a full Transformer-based audio captioning
method to improve the capability of modelling global and
fine-grained temporal information. Ye et al. [24] proposed a
fully supervised audio captioning model based on the multi-
modal attention module, which utilizes acoustic and semantic
information to generate captions. Xu et al. [25] pre-trained
the audio encoder on audio-text retrieval tasks, enhancing
the representation capability of the audio encoder for audio

1https://dcase.community/

https://dcase.community/
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captioning. Kim et al. [26] used a pre-trained language model
(GPT-2) as the decoder to ensure text generation capability,
with global and temporal information from the input audio
as the prefix to guide the output of the decoder. Koh et
al. [27] introduced the reconstruction latent space similarity
regularisation to regulate model training in audio captioning.
Zhang et al. [28] proposed a two-stage audio captioning ap-
proach to mitigate the effects of semantic disparity among the
audio captions by incorporating feature space regularisation
and improving the accuracy of the model-generated description
text. Ghosh et al. [29] proposed a retrieval-augmented audio
captioning method that uses the CLAP encoder to retrieve
captions similar to the input audio from the external database
and then the retrieved captions are used as extra guidance for
the decoder to generate descriptive text.

However, the high cost of collecting audio-text paired data
has limited the applicability of these methods. Therefore,
reducing the dependency of audio captioning models on paired
data has emerged as a prominent research focus in audio
captioning.

C. Zero-Shot Audio Captioning

To further reduce the cost of paired data collection, zero-
shot audio captioning aims to generate audio captions without
using well-paired audio-text data [7]. Audio Flamingo [30]
used a large-scale weakly aligned audio-text pair dataset to
train the audio language model and evaluated the model on the
AudioCaps benchmark without fine-tuning. Inspired by recent
advancements in the image-text field [31]–[35], where noise
injection and alignment strategies have been shown to en-
hance zero-shot capabilities, some works have extended these
ideas to zero-shot audio captioning by utilizing pre-trained
CLAP models or Large Language Models (LLMs) [7]–[10].
We categorize these studies into training-free methods and
text-only training based methods. The training-free methods
achieve zero-shot audio-to-text generation based on the pre-
trained models without performing additional training of the
language models. Shaharabany et al. [7] designed a classifier-
guided zero-shot method, which employed the ImageBind
model [36] and the pre-trained binary audibility model as
classifiers to guide the LLMs towards captions. Salewski et
al. [8] proposed a similar approach, where the similarities
between the CLAP embeddings of the input audio data and the
previously generated tokens are used to derive the probability
of the current tokens being selected from the vocabulary for
caption generation.

However, training-free methods usually achieve poor per-
formance and fall short in zero-shot captioning capability.
Compared to training-free methods, the text-only training
based methods [9], [10] rely more on the multimodal mod-
elling capabilities provided by the pre-trained CLAP model.
These methods typically train the language decoder using only
textual data, but not any paired audio data. However, the
paired audio-text data are not well aligned within the CLAP’s
semantic space, as the embeddings from different modalities
may form distinct clusters, resulting in a gap between text
embeddings and their corresponding audio embeddings [12].

This misalignment can adversely impact on the performance
of the text-only training methods, particularly when the text-
to-text generation model obtained in training is transitioned to
audio-to-text generation in inference.

Inspired by zero-shot image captioning methods [31], [32],
Kouzelis and Katsouros [10] proposed a noise injection and
an embedding shift strategy to reduce the modality gap during
training, and a nearest-neighbour strategy or a projection-
based decoding strategy to map the audio embeddings to text
embeddings in inference by utilizing the textual data stored
from the training set. Among these strategies, the projection-
based decoding strategy demonstrated superior performance
compared to the others. Deshmukh et al. [9] also proposed a
noise injection method which injects a random variable into
the text embeddings. Although these text-only training-based
methods excel in in-domain situations, they often overlook
cross-domain situations.

Inspired by the text-only training-based methods discussed
above and the noise injection idea presented in [9], [10], we
devise a mixed-augmentations-based soft prompt to enhance
the model’s generalization ability in transitioning from text-to-
text generation to audio-to-text generation. In addition, we em-
ploy a retrieval-based acoustic-aware hard prompt to improve
cross-domain performance by incorporating label information
of acoustic events.

III. PROPOSED METHOD

In this work, we propose an alternative zero-shot audio cap-
tioning method to alleviate the reliance of the model on audio-
text paired data in traditional fully supervised audio captioning
methods. The overall architecture of our proposed method is
illustrated in Fig. 2. In the text-only training stage, we use
the CLAP text encoder to extract the embedding of the input
text, and then the mixed-augmentations-based soft prompt
(described in Sec. III-A) and the acoustic-aware hard prompt
(described in Sec. III-B) are fed to the language decoder to
reconstruct the given text. In the zero-shot inference stage
(described in Sec. III-C), we replace the CLAP text encoder
with the CLAP audio encoder to generate the description of
the input audio.

A. The Soft Prompt based on Mixed-augmentations

An alternative approach to the zero-shot audio captioning
task is to exploit the CLAP model, as shown in Fig 1 (b),
where audio and text embeddings are aligned in the same
semantic space through contrastive learning. During training,
for a given input text T , the language decoder is trained to
reconstruct the input text from the CLAP text embedding.
The paired audio-text data, however, may not be well aligned
within the multimodal semantic space. This can result in a
gap between text embeddings and audio embeddings, which
may adversely impact the ability of the model (as shown in
Fig 1 (b)) to generalize effectively from training (text-to-text
generation) to inference (audio-to-text generation). To address
this issue, we employ a mixed-augmentations strategy, which
includes instance replacement and embedding augmentation,
to enable the model to learn more robust latent representations.
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Fig. 2. The overall architecture of our proposed method. Specifically, in the training stage, we reconstruct the input text based on the acoustic-aware hard
prompt and soft prompt with only textual data, so training does not require any paired data. During inference, we replace the CLAP text encoder fText

clap (·)
with the CLAP audio encoder fAudio

clap (·) to generate the descriptive text of the input audio.

Instance Replacement: First, we retrieve N captions in the
text corpus T that are semantically similar to the input text T
as a candidate set CN :

CN =

{
argmaxN

T∗
n∈T

fText
clap (T ) · fText

clap (T
∗
n)

∥fText
clap(T )∥ · ∥fText

clap(T
∗
n)∥

}
, (1)

where argmaxN select text embeddings with top-N highest
similarities, fText

clap(T ) ∈ RF is the CLAP text embedding of
the input text T , ∥ · ∥ represents the norm of the embedding
vector, T ∗

n is the n-th candidate text, and F is the dimension
of the CLAP embedding and n ≤ N .

Then, fText
clap (T

∗
n) is randomly selected from the candidate set

of text embeddings CN to replace the original text embedding
fText

clap (T ).

Embedding Augmentation: Inspired by the noise injection
method used in [9], [10], we add a Gaussian noise ϵ ∼ N (0,
σ) into the candidate text embedding fText

clap (T
∗
n) to obtain the

noisy text embedding fText
clap (T

∗
n) + ϵ, where σ is the standard

deviation and ϵ ∈ RF .
Then, the noisy text embedding is fed into the mapping

network M(·) to get the text soft prompt SText ∈ RK×Fg for
the language decoder,

SText = M
(
fText

clap (T
∗
n) + ϵ

)
, (2)

where the soft prompt SText, a term from NLP [13], [14], refers
to the inclusion of the continuous embeddings as the input to
the language decoder, Fg is the dimension of the embedding
for the language decoder, and K is the total length of the soft
prompt SText.

B. Acoustic-aware Hard Prompt based on Retrieval

Acoustic labels signify the acoustic events or scenes within
an audio clip, together with their characteristics. For example,
the audio label (“gunshots”) suggests that the audio clip likely
contains sharp and loud pops, while labels like “animal” can
encompass diverse sound patterns across datasets. Acoustic
labels are typically obtained through pre-trained models that

identify specific events in a given audio clip. Compared to the
soft prompt S derived from the encoder and mapping network,
acoustic labels provide domain-agnostic context about the
potential audio content. This information helps the model
adapt to variations across datasets and reduces the risk of
overfitting to dataset-specific details. To further enhance model
performance, we exploit additional acoustic-aware prompts in
the text decoding process, enabling the model to focus on
relevant acoustic events and improving its contextual under-
standing.

Acoustic-aware Hard Prompt: Firstly, we need to build
the vocabulary of audio events V . We use the labels of
AudioSet [37], a prevalent benchmark dataset for the audio
tagging task. AudioSet contains 527 audio categories and
covers various human and animal sounds, musical instruments
and genres, and environmental sounds. Therefore, the vocab-
ulary of audio events V is a set of 527 audio event labels
{v1, . . . , v527}, where v represents the audio event classes.

Given the text embedding fText
clap (T ), we retrieve M audio

events that are most similar to fText
clap (T ) from the vocabulary

V based on the cosine similarity of the CLAP embeddings:

{v∗1 , . . . , v∗M} =

{
argmaxM

v∗
m∈V

fText
clap (T ) · fText

clap (v
∗
m)

∥fText
clap (T )∥ · ∥fText

clap (v
∗
m)∥

}
,

(3)
where v∗m is the m-th audio event. Therefore, the retrieved
audio events are used to construct the acoustic-aware hard
prompt H = “There are {v∗1 , . . . , v∗M} in the audio.”.

We concatenate the embeddings of the acoustic-aware
prompt H and the soft prompt SText along the sequence and
feed them into the language decoder to reconstruct the input
text T in an auto-regressive manner. The embeddings of the
acoustic-aware prompts H are extracted using the embedding
layer of the language decoder, resulting in embeddings with
the shape RL×Fg , where L is the length of the tokenized
sequence of the entire acoustic-aware prompt H . The model
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is trained using the cross-entropy loss:

L = − 1

|T |

|T |∑
i=1

log pθ(ti|T<i, H, SText) (4)

where |T | is the length of the input T , ti is the i-th word
token of T , T<i includes all the tokens from the start of
T up to just before the i-th token, and pθ(·) represents the
probability distribution of the output token given the previous
tokens, modelled by the language decoder, with θ representing
all the parameters of the model.
Event Label Dropout: To make the model robust to retrieval
errors and avoid over-reliance on the acoustic-aware prompt
H , we propose an event label dropout technique, where each
retrieved audio event v∗m in {v∗1 , . . . , v∗M} is either retained
or dropped during training. Specifically, each audio event v∗m
is retained with a probability of 1 − β or dropped with a
probability of β, as follows:

v∗m =

{
v∗m, with probability 1− β

∅, with probability β
(5)

where v∗m is either retained or replaced by ∅ to indicate that
the event has been dropped. In this way, the model is trained
to avoid simply concatenating audio events from acoustic-
aware prompt H to generate the caption while ignoring the
information in soft prompt SText.

C. Zero-shot Inference

In the inference stage, the model needs to generate the text
description T for the given audio clip A. To this end, we
use a CLAP audio encoder to extract the CLAP embedding
fAudio

clap (A) of this audio clip, which replaces the text en-
coder used during model training. We process the embedding
fAudio

clap (A) in a similar way to obtain its audio soft prompt
SAudio and retrieved audio events {v∗1 , . . . , v∗M}, excluding
the mixed-augmentations and the event label dropout, by
reformulating Eq. (2) and Eq. (3) as follows:

SAudio = M
(
fAudio

clap (A)
)
, (6)

{v∗1 , . . . , v∗M} =

{
argmaxM

v∗
m∈V

fAudio
clap (A) · fText

clap (v
∗
m)

∥fAudio
clap (A)∥ · ∥fText

clap (v
∗
m)∥

}
,

(7)
Next, the retrieved audio events are used to construct

the acoustic-aware hard prompt H , formatted as “There are
{v∗1 , . . . , v∗M} in the audio.”. We then concatenate the word
embeddings of the hard prompt H with the soft prompt SAudio,
and feed them into the language decoder to predict the caption
T in an auto-regressive manner.

IV. EXPERIMENTAL SETTINGS

This section introduces the experimental settings, includ-
ing model architectures, datasets, baselines and metrics, and
implementation details.

Linear @(𝐾 ∗ 𝐹!)/2

Linear 	@(𝐾 ∗ 𝐹!)	

Reshape

𝑆 ∈ ℝ"×$!
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Fig. 3. The model architecture of the mapping network. It is a simple MLP
containing two linear layers that maps the CLAP embedding fclap(·) into
the soft prompt S. The number after the “@” symbol indicates the feature
dimension of the linear layer output.

A. Model Architectures

CLAP Encoder: In this work, we use the CLAP model2

as our encoder which is only trained on WavCaps [11],
which does not contain any human-annotated data. The CLAP
audio encoder is an HTSAT [19] and the text encoder is
a RoBERTa [21]. All audio clips are randomly cropped or
padded to 10 seconds and sampled at 32 kHz. We use a 64-
dimensional log-Mel spectrogram extracted from a Hanning
window of 1, 024 points with a hop size of 320 as the input
audio feature. The dimension F of the CLAP embedding is
1, 024, and all the parameters in the CLAP encoder are frozen.
Mapping Network and Language Decoder: The mapping
network transforms the CLAP embedding fclap(·) into soft
prompt S. As shown in Fig. 3, the mapping network is a
simple Multi-Layer Perceptron (MLP) which contains two
linear layers. For the language decoder, we use the pre-trained
GPT2-base3 to generate text. The embedding dimension Fg

is 768, and all model parameters except the CLAP encoder
are trainable.

B. Datasets

We conducted our experiments on audio captioning bench-
mark datasets, AudioCaps [3] and Clotho [2]. AudioCaps is the
largest human-annotated audio captioning dataset and contains
51K audio clips with one caption per audio clip in the training
set and five captions per audio clip in the evaluation set. The
audio clips are a subset of AudioSet and annotated with the
aid of visual information. Clotho is the official benchmark in
the DCASE challenge, and contains about 3.8K audio clips,
where each audio clip has five captions. The audio clips in
Clotho are collected from the Freesound platform [39], which
are annotated with only audio signals, without using any visual
signals. Hence, AudioCaps and Clotho are clearly different in
terms of audio sources and textual style [5].

C. Baselines

In this work, we compare our method with two types of
baselines: fully supervised audio captioning methods and zero-
shot audio captioning methods. They have been introduced in
detail in Sec. II.

2The weights file of the CLAP model: https://drive.google.com/drive/
folders/1MeTBren6LaLWiZI8 phZvHvzz4r9QeCD

3The weights file of the pre-trained GPT2-base: https://huggingface.co/
openai-community/gpt2 [38]

https://drive.google.com/drive/folders/1MeTBren6LaLWiZI8_phZvHvzz4r9QeCD
https://drive.google.com/drive/folders/1MeTBren6LaLWiZI8_phZvHvzz4r9QeCD
https://huggingface.co/openai-community/gpt2
https://huggingface.co/openai-community/gpt2
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TABLE I
EXPERIMENTAL RESULTS FOR IN-DOMAIN SCENARIOS ON AUDIOCAPS.

Method BLEU1 BLEU4 ROUGEL CIDEr METEOR SPICE SPIDEr
Fully Supervised Audio Captioning

Prefix AAC [26] 71.3 † 30.9 † 50.3 † 73.3 † 24.0 † 17.7 † 45.5 †
RECAP [29] 72.8 † 31.7 † 52.1 † 75.0 † 25.2 † 18.3 † 47.2 †

ACT [23] 68.4 ± 0.44 ⋆ 25.2 ± 0.99 ⋆ 48.0 ± 0.35 ⋆ 67.5 ± 1.90 ⋆ 22.8 ± 0.27 ⋆ 16.9 ± 0.51 ⋆ 42.2 ± 1.09 ⋆

64.7 † 25.2 † 46.8 † 67.9 † 22.2 † 16.0 † 42.0 †
MAAC [24] 64.0 ± 0.60 ⋆ 24.3 ± 0.55 ⋆ 44.7 ± 0.25 ⋆ 59.3 ± 1.05 ⋆ 21.0 ± 0.15 ⋆ 14.4 ± 0.38 ⋆ 36.9 ± 0.54 ⋆

Xu et al. [25] 67.6 ± 0.21 ⋆ 27.2 ± 0.33 ⋆ 49.7 ± 0.17 ⋆ 73.8 ± 1.21 ⋆ 24.7 ± 0.06 ⋆ 18.4 ± 0.06 ⋆ 46.1 ± 0.62 ⋆

Ours-FS 70.3 ± 0.17 26.8 ± 0.48 45.7 ± 0.18 74.5 ± 0.80 24.4 ± 0.15 18.2 ± 0.19 46.2 ± 0.39
Zero-Shot Audio Captioning

Audio Flamingo [30] † − − − 50.2 − − −
Shaharabany et al. [7] † − 9.8 8.2 9.2 8.6 − −

ZerAuCap [8] † − 6.8 33.1 28.1 12.3 8.6 18.3
NoAudioCaptioning [9] ⋆ 59.2 ± 1.43 15.0 ± 0.66 40.4 ± 0.37 42.4 ± 1.58 19.6 ± 0.69 13.6 ± 0.51 28.0 ± 0.96

WSAC [10] ⋆ 61.1 ± 0.48 17.1 ± 0.28 43.5 ± 0.36 56.4 ± 0.44 23.2 ± 0.09 16.3 ± 0.29 36.3 ± 0.31
Ours 66.0 ± 0.15 21.3 ± 0.48 45.7 ± 0.18 64.4 ± 0.61 22.0 ± 0.23 15.6 ± 0.23 40.0 ± 0.33

† The original results are listed in the paper.
⋆

The results are re-implemented by us.
TABLE II

THE EXPERIMENTAL RESULTS FOR IN-DOMAIN SCENARIOS ON THE CLOTHO DATASET

Method BLEU1 BLEU4 ROUGEL CIDEr METEOR SPICE SPIDEr
Fully Supervised Audio Captioning

Prefix AAC [26] 56.0 † 16.0 † 37.8 † 39.2 † 17.0 † 11.8 † 25.5 †
RECAP [29] 56.3 † 16.5 † 38.3 † 39.8 † 17.9 † 12.2 † 21.4 †
ACTUAL [28] 56.6 † 16.1 † 37.5 † 40.9 † 17.6 † 12.1 † 26.5 †
RLSSR [27] 55.1 † 16.8 † 37.3 † 38.0 † 16.5 † 11.1 † 24.6 †

ACT [23] 58.4 ± 0.21 ⋆ 16.9 ± 0.30 ⋆ 38.5 ± 0.30 ⋆ 41.6 ± 0.46 ⋆ 17.8 ± 0.08 ⋆ 12.1 ± 0.14 ⋆ 26.9 ± 0.26 ⋆

MAAC [24] 57.0 ± 0.53 ⋆ 16.0 ± 0.40 ⋆ 37.7 ± 0.37 ⋆ 41.3 ± 0.56 ⋆ 17.7 ± 0.22 ⋆ 12.3 ± 0.13 ⋆ 26.8 ± 0.32 ⋆

57.7 † 17.4 † 37.7 † 41.9 † 17.4 † 11.9 † 26.9 †

Xu et al. [25] 56.9 ± 0.15 ⋆ 16.0 ± 0.39 ⋆ 37.9 ± 0.33 ⋆ 41.8 ± 0.69 ⋆ 17.9 ± 0.15 ⋆ 12.7 ± 0.07 ⋆ 27.3 ± 0.34 ⋆

- 16.4 † 38.6 † 42.1 † - 12.6 † 27.4 †
Ours-FS 58.0 ± 0.54 16.7 ± 0.19 38.7 ± 0.10 42.6 ± 0.27 18.0 ± 0.05 12.8 ± 0.07 27.7 ± 0.15

Zero-Shot Audio Captioning
ZerAuCap [8] † − 2.9 25.4 14.0 9.4 5.3 9.7

NoAudioCaptioning [9] ⋆ 51.8 ± 1.02 11.3 ± 0.80 34.7 ± 0.87 29.2 ± 1.25 15.6 ± 0.38 10.3 ± 0.24 19.7 ± 0.66
WSAC [10] ⋆ 54.5 ± 0.05 12.6 ± 0.14 35.9 ± 0.04 35.7 ± 0.33 16.9 ± 0.02 11.8 ± 0.01 23.8 ± 0.17

Ours 56.4 ± 0.24 15.6 ± 0.22 37.5 ± 0.17 40.3 ± 0.47 17.3 ± 0.17 11.9 ± 0.19 26.1 ± 0.27
† The original results are listed in the paper.
⋆

The results are re-implemented by us.

Fully Supervised Audio Captioning: The fully supervised
methods we compared include: ACT [23], MAAC [24], Xu et
al. [25], Prefix AAC [26], RLSSR [27], RECAP [29], and
ACTUAL [28]. All of which are open sourced and not trained
with any additional data.
Zero-shot Audio Captioning: The zero-shot methods we com-
pared include: Audio Flamingo [30], Shaharabany et al. [7],
ZerAuCap [8], NoAudioCaptioning [9], and WSAC [10]. Audio
Flamingo [30] is a large audio language model and achieves
SOTA in several audio understanding tasks. Shaharabany et
al. [7] and ZerAuCap [8] are training-free zero-shot methods.
NoAudioCaptioning [9] and WSAC [10] are text-only training
based methods. It should be noted that we re-implemented
NoAudioCaptioning [9] and WSAC [10] using the same pre-
trained CLAP model to ensure the fairness of the comparison.

D. Metrics

Similar to other audio captioning works, we use common
captioning metrics, including BLEUn [40], ROUGEL [41],
METEOR [42], CIDEr [43], SPICE [44], and SPIDEr [45]
for evaluation. For all metrics, higher scores indicate better
performance.

E. Implementation Details

In our work, we train the network using the AdamW
optimizer with a weight decay of 0.02, an initial learning rate
of 1× 10−5, a batch size of 32, a warm-up iteration of 3, 000
and a total training iteration of 15, 000. The model is trained
on a 2080Ti GPU. We construct the hyperparameter tuning
experiments on the Clotho dataset (described in the Sec. V-D).
We set the number of candidates N in instance replacement as
5, the number of audio events M in the acoustic-aware prompt
as 4, the noise variance σ in embedding augmentation as 0.1,
the length K of the soft prompt as 10, and the dropout rate β
of event labels as 0.6. We use beam search with a beam size
of 3 to generate captions during inference.

V. RESULTS AND DISCUSSION

This section shows results followed by discussions of com-
parative experiments. In all tables, the bold font represents the
best result for each metric in the same setting. Some works do
not provide cross-domain results so we re-train these models
using five different random seeds and report the mean and
standard deviation of metrics.
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A. In-domain Audio Captioning

Tables I and II compare our proposed method and baselines
for in-domain scenarios, where the training and test sets come
from the same benchmark dataset. It should be specially
noted that we re-implemented the text-only training-based
baseline methods using the same CLAP model to ensure a
fair comparison. The fully supervised methods use audio-text
paired data. The Ours-FS model operates in a fully supervised
setting, where we use audio data and the CLAP audio encoder
instead of the CLAP text encoder and mixed-augmentations
strategy during training.

We have the following observations from the results for in-
domain scenarios on the Clotho and AudioCaps datasets: 1)
The fully supervised audio captioning methods tend to achieve
better experimental performance than the zero-shot audio
captioning methods. This is expected as the fully-supervised
methods are trained using audio-text pairs, and the models
learn the “audio-to-text” conversion ability well. The zero-shot
methods suffer from the need to migrate from “text-to-text” in
training to “audio-to-text” in inference, thus the discrepancy
between training and inference results in decreased in-domain
performance. 2) Our proposed zero-shot method outperforms
other zero-shot audio captioning methods in most metrics. We
attribute this improvement to the use of mixed-augmentations-
based soft prompt and retrieval-based acoustic-aware hard
prompt in model training. The mixed-augmentations strategy
introduces partial perturbations to the CLAP embeddings,
allowing the model to learn robust representations [46] and
enhancing its generalization ability from text-to-text genera-
tion to audio-to-text generation. In addition, the acoustic-aware
hard prompt provides acoustic event information, which can
help improve the model’s performance by making it more
context-aware. Furthermore, we found that both the mixed-
augmentations strategy and the acoustic-aware hard prompt
continue to be effective in the fully-supervised setting. The
Ours-FS method demonstrates superior performance on the
Clotho dataset and comparable performance on the AudioCaps
dataset, further validating the effectiveness of these strategies.
3) Our proposed zero-shot method, which does not utilize any
paired data, achieves about 85.9% of the performance of the
fully-supervised state-of-the-art method RECAP [29], which
obtains a CIDEr score of 75.0 on the AudioCaps dataset, and
about 96.4% of the performance of Xu et al. [25], attaining
a CIDEr score 41.8 on the Clotho dataset. This demonstrates
the effectiveness of our method.

B. Cross-domain Audio Captioning

Cross-domain scenarios are where the training and test sets
come from different benchmark datasets. The model is trained
using only data from the Source benchmark, and any data
from the training set of the Target benchmark is prohibited. In
the real world, the audio in Target domain is often agnostic,
so the cross-domain performance can better represent the
generalizability of the model in real-world applications.

Table III shows the experimental results of our method
and baseline methods in cross-domain scenarios, where the
“Source =⇒ Target” refers to the scenario where the model is

trained on the training set of the Source dataset and evaluated
on the test set of the Target dataset. It is important to note
that neither the training nor the validation set of the Target
dataset is used in model training and selection. From the
experimental results, we find the following: 1) Both fully-
supervised and zero-shot methods exhibit performance degra-
dation in cross-domain scenarios compared to the in-domain
scenarios, particularly on the AudioCaps dataset. 2) The fully-
supervised methods often struggle to generalize beyond the
training domain. In contrast, zero-shot methods benefit from
augmentation strategies, such as noise injection, which help
the model learn more robust feature representations. As a
result, the performance degradation for the fully supervised
methods tends to be more severe, as compared to the zero-shot
methods. 3) Our proposed model outperforms all the baselines,
including both fully-supervised and zero-shot methods, across
most evaluation metrics. The mixed-augmentation-based soft
prompt introduces perturbations that contribute to learning
robust feature representations. Moreover, the acoustic-aware
hard prompts play a critical role by providing domain-agnostic
guidance based on labels of the acoustic events.

The success of zero-shot audio captioning approach enables
the scaling up of the training of audio captioning models using
text-only data. This is promising since human-annotated audio
captioning data is scarce. However, there is limited availability
of text data for describing audio, compared to the textual data
available from other fields, such as visual or music captioning.
This leads to two options for scaling up the training data: 1)
using data from other fields, or 2) generating synthetic audio
captioning data from LLMs. The former is human-annotated
real data, presenting better diversity and larger scale, while the
latter’s domain is better aligned with the target. Therefore, we
explore whether the dataset size or the field alignment plays
an important role by comparing training data from different
fields.

Table IV shows the cross-domain performance of our pro-
posed method trained on textual data from different fields
and evaluated on Clotho and AudioCaps. We use the textual
data from three fields for training: LLM-generated audio
captioning corpus (ChatGPT4, FreeSound5, WavCaps [11]),
visual captioning corpus (COCO Captions [6]), and music cap-
tioning corpus (MusicCaps [47], LP-MusicCaps MSD [48]).
For the text from ChatGPT, we used GPT-3.5 to generate
31K text based on in-context learning. Specifically, we provide
example captions from Clotho or AudioCaps and ask ChatGPT
to generate similarly styled audio descriptions based on the
examples6. This enables the model to generate a large number
of audio captions automatically, with a simple and fully
automated process. The text data in FreeSound comes from the
subset of WavCaps, collected through an online collaborative
sound-sharing site [39]. WavCaps [11] is a large-scale weakly-
labeled audio captioning dataset that collects audio clips and
their raw descriptions from web sources and uses ChatGPT to
filter and clean noisy descriptions. COCO Captions [6] is a

4https://chat.openai.com/
5https://freesound.org/
6The prompt template is shown in Appendix A

https://chat.openai.com/
https://freesound.org/
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TABLE III
THE EXPERIMENTAL RESULTS FOR CROSS-DOMAIN SCENARIOS ON THE AUDIOCAPS AND CLOTHO DATASET

Method AudioCaps =⇒ Clotho Clotho =⇒ AudioCaps

ROUGEL CIDEr METEOR SPICE ROUGEL CIDEr METEOR SPICE
Fully Supervised Audio Captioning

Prefix AAC [26] † 27.6 19.2 11.2 7.4 33.0 21.1 14.4 8.3
RECAP [29] † 27.6 19.5 11.0 8.4 28.1 19.1 11.2 13.6

ACT [23] ⋆ 26.1 ± 0.44 13.4 ± 0.68 10.2 ± 0.25 5.5 ± 0.39 35.2 ± 0.22 23.7 ± 0.87 16.4 ± 0.17 10.7 ± 0.31
MAAC [24] ⋆ 24.8 ± 0.83 16.4 ± 1.28 10.3 ± 0.35 5.8 ± 0.10 35.9 ± 0.20 25.4 ± 0.45 17.1 ± 0.23 10.9 ± 0.18

Xu et al. [25] ⋆ 29.2 ± 0.04 22.8 ± 0.51 12.8 ± 0.07 8.5 ± 0.22 35.8 ± 0.29 25.6 ± 0.85 16.7 ± 0.30 11.1 ± 0.20
Ours-FS 29.1 ± 0.24 22.4 ± 0.65 12.8 ± 0.12 8.5 ± 0.09 36.1 ± 0.23 30.9 ± 0.72 18.0 ± 0.22 12.6 ± 0.13

Zero-shot Audio Captioning
NoAudioCaptioning [9] ⋆ 26.6 ± 0.45 17.5 ± 2.00 11.1 ± 0.59 7.4 ± 0.60 34.1 ± 1.18 23.3 ± 1.68 16.7 ± 0.36 10.6 ± 0.34

WSAC [10] ⋆ 26.6 ± 0.34 20.6 ± 0.31 12.0 ± 0.11 8.2 ± 0.08 35.5 ± 0.15 25.6 ± 0.22 17.3 ± 0.10 12.0 ± 0.08
Ours 29.8 ± 0.55 24.8 ± 0.55 13.2 ± 0.46 9.3 ± 0.44 36.1 ± 0.51 33.8 ± 0.93 18.0 ± 0.28 12.3 ± 0.18

† The original results are listed in the paper.
⋆

The results are re-implemented by us.

TABLE IV
THE EXPERIMENTAL RESULTS UNDER TEXTUAL DATA FROM DIFFERENT FIELDS

Data Field Dataset Size Source Dataset =⇒ Clotho Source Dataset =⇒ AudioCaps

ROUGEL CIDEr METEOR SPICE ROUGEL CIDEr METEOR SPICE

Audio Captioning
ChatGPT4 31K 25.5 ± 0.31 16.3 ± 0.62 10.6 ± 0.19 6.3 ± 0.11 27.3 ± 0.27 15.5 ± 0.39 11.7 ± 0.17 7.1 ± 0.22
Freesound5 84K 30.4 ± 0.20 22.0 ± 0.84 12.6 ± 0.20 7.8 ± 0.15 28.6 ± 0.42 22.3 ± 0.94 12.3 ± 0.34 6.7 ± 0.21

WavCaps [11] 190K 30.6 ± 0.36 22.1 ± 0.86 12.6 ± 0.22 7.9 ± 0.20 33.4 ± 1.21 31.6 ± 1.96 15.5 ± 0.61 9.1 ± 0.59
Visual Captioning COCO Captions [6] 414K 25.9 ± 0.24 10.0 ± 0.55 8.9 ± 0.28 5.1 ± 0.44 27.8 ± 0.53 10.6 ± 1.11 10.6 ± 0.55 6.2 ± 0.69

Music Captioning MusicCaps [47] 13K 21.1 ± 1.34 6.6 ± 0.90 8.8 ± 0.19 4.5 ± 0.42 20.4 ± 1.84 9.6 ± 0.42 9.8 ± 0.13 6.3 ± 0.89
LP-MusicCaps MSD [48] 526K 15.9 ± 0.72 0.9 ± 0.10 6.1 ± 0.11 1.0 ± 0.16 15.0 ± 0.56 0.8 ± 0.08 6.2 ± 0.24 0.9 ± 0.13

TABLE V
THE ABLATION EXPERIMENT RESULTS OF DIFFERENT COMPONENTS.

Setting Components In-Domain Scenarios Cross-Domain Scenarios

IA EA AP ROUGEL CIDEr METEOR SPICE ROUGEL CIDEr METEOR SPICE
ZS-Base Model a). 29.9 ± 0.82 15.7 ± 0.37 13.1 ± 0.52 7.5 ± 0.62 29.8 ± 1.00 13.8 ± 0.71 14.1 ± 0.62 7.8 ± 0.67

b). ✓ 33.0 ± 0.66 25.9 ± 0.97 15.0 ± 0.30 9.6 ± 0.34 31.9 ± 0.28 18.2 ± 0.79 14.8 ± 0.30 7.8 ± 0.49
c). ✓ 34.7 ± 0.30 30.4 ± 0.89 15.7 ± 0.14 10.5 ± 0.32 33.4 ± 0.21 20.6 ± 0.48 15.3 ± 0.05 9.2 ± 0.15
d). ✓ 35.0 ± 0.44 31.9 ± 0.93 16.1 ± 0.17 10.2 ± 0.18 34.1 ± 0.52 25.9 ± 0.88 16.6 ± 0.37 10.6 ± 0.45
e). ✓ ✓ 36.0 ± 0.27 32.6 ± 0.46 16.1 ± 0.19 11.0 ± 0.29 32.9 ± 0.35 19.6 ± 0.76 15.3 ± 0.19 9.2 ± 0.17

ZS-Full Model f). ✓ ✓ ✓ 37.5 ± 0.17 40.3 ± 0.47 17.3 ± 0.17 11.9 ± 0.19 36.1 ± 0.51 33.8 ± 0.93 18.0 ± 0.28 12.3 ± 0.18

human-annotated benchmark dataset in visual captioning. For
the music captioning corpus, MusicCaps [47] is annotated by
ten professional musicians and LP-MusicCaps MSD [48] is a
large language model based pseudo music caption dataset.

From the results shown in Table IV, we have the following
findings. 1) The choice of textual data domain significantly
influences the model’s cross-domain performance. The method
trained on text data from WavCaps in the audio captioning
field achieve acceptable cross-domain performance compared
to fully supervised and other zero-shot methods, as shown
in Table III. This discrepancy likely arises from the field-
specific focus of captions: Visual captions emphasize visual
objects, while music captions focus on elements like genre and
rhythm. Audio captions, however, prioritize audio events and
environmental context, making field alignment a critical factor
for effective model generalization. 2) For textual data within
the audio captioning field, we observe that increasing the
dataset size (from ChatGPT to WavCaps) leads to consistent
cross-domain performance improvements on both Clotho and
AudioCaps. This trend suggests that expanding the quantity
of field-aligned textual data can significantly enhance the
model’s ability to generalize across diverse audio datasets.
Compared to paired audio-text data and manually annotated

TABLE VI
THE NUMBER OF CANDIDATES N IN INSTANCE REPLACEMENT

N ROUGEL CIDEr METEOR SPICE
1 36.5 ± 0.17 35.8 ± 0.51 16.6 ± 0.11 11.2 ± 0.15
3 37.0 ± 0.15 36.8 ± 0.36 16.9 ± 0.10 11.7 ± 0.18
5 37.1 ± 0.10 36.9 ± 0.36 16.9 ± 0.10 11.7 ± 0.10
7 37.0 ± 0.18 36.6 ± 0.49 16.8 ± 0.09 11.5 ± 0.14
10 37.2 ± 0.22 36.1 ± 0.70 16.8 ± 0.11 11.4 ± 0.13

audio captions, GPT-generated text data is significantly easier
to obtain, as it bypasses the complex and time-consuming
process of collecting and annotating paired datasets. Our
method utilizes in-context learning to automatically generate
large volumes of audio captions, enabling a simpler and more
efficient approach to captioning. This shift from relying on
scarce paired data to utilizing abundant, scalable textual data
could pave the way for a new paradigm in audio captioning,
broadening its applicability and advancing research in the field.

C. Ablation Studies

In this section, we conduct ablation experiments for in-
domain and cross-domain scenarios by training the models
on Clotho. The results are shown in Table V, where ‘IA’,
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Fig. 4. The experimental results for different text augmentation strategies,
where a) shows the results on the Clotho dataset under the in-domain scenario,
and b) illustrates the cross-domain scenario. In the cross-domain scenario,
where the text corpus from the Clotho training set is used for model training,
while the model evaluation is performed on the AudioCaps dataset.

‘EA’, and ‘AP’ are abbreviations for the instance augmen-
tation, embedding augmentation, and acoustic-aware prompt,
respectively. The ZS-Base model does not use any components
and its model structure only contains the CLAP encoder,
the mapping network, and the language decoder. The audio
features are extracted using the CLAP audio encoder and fed
into the trained mapping network and language decoder to
generate the caption of the given audio during the inference
stage. The model structure is shown in Fig. 1 (b). The settings
(b, c, d) show that the components we proposed can improve
the model performance in all metrics compared to the base
model in setting a. In particular, the settings (b, c) show
that both instance replacement and embedding augmentation
can significantly improve the in-domain performance of the
model. These strategies enable the model to learn robust rep-
resentations by introducing partial perturbations to the CLAP
embedding, thus improving the model’s generalisation from
text-to-text generation to audio-to-text generation and enhanc-
ing the performance of zero-shot audio captioning. Acoustic-
aware prompts (setting d) guides the language decoder through
acoustic-aware prompts for audio events, thus enabling the
model to achieve better cross-domain generalization perfor-
mance compared to setting e, while maintaining comparable
in-domain performance. Interestingly, this suggests that the
acoustic-aware strategy is more robust than manipulating the
text sentence. Our proposed method, ZS-Full model, in the
setting f achieves significant improvements in all metrics
(especially in the CIDEr metric) in both in-domain and cross-
domain scenarios, indicating the effectiveness of our proposed
model.

In addition, we conduct the ablation experiments to compare
our method with other text augmentation strategies used for
audio captioning [49]–[51]. The results are shown in Fig. 4.
The Mixed-augmentations strategy is our proposed method.
The TF-IDF strategy [52] enhances the text by replacing low-
information words with low TF-IDF values while retaining
high-information words with high TF-IDF values. The Word-
Net strategy [53], on the other hand, leverages WordNet [54]

TABLE VII
THE VARIANCE σ2 OF NOISE IN EMBEDDING AUGMENTATION

σ2 ROUGEL CIDEr METEOR SPICE

1× 10−4 34.8 ± 0.72 31.0 ± 1.83 16.0 ± 0.43 10.1 ± 0.43
1× 10−3 35.4 ± 0.35 33.7 ± 0.58 16.3 ± 0.13 10.6 ± 0.18
1× 10−2 36.1 ± 0.31 36.8 ± 0.45 16.5 ± 0.09 11.0 ± 0.12
1× 10−1 34.2 ± 0.17 32.1 ± 0.53 15.2 ± 0.11 9.7 ± 0.14

1 34.4 ± 0.23 32.5 ± 0.75 15.3 ± 0.15 10.0 ± 0.21

TABLE VIII
THE LENGTH K OF SOFT PROMPT

K ROUGEL CIDEr METEOR SPICE

1 35.7 ± 0.29 35.5 ± 0.42 16.2 ± 0.11 10.5 ± 0.12
5 36.8 ± 0.04 39.2 ± 0.09 16.9 ± 0.04 11.4 ± 0.00

10 37.5 ± 0.17 40.3 ± 0.47 17.3 ± 0.17 11.9 ± 0.19
15 37.2 ± 0.11 40.2 ± 0.78 17.3 ± 0.19 11.6 ± 0.21
20 37.1 ± 0.40 39.3 ± 2.40 17.2 ± 0.35 11.4 ± 0.12

to replace words in the sentence with synonyms or words of
similar meaning to achieve augmentation. It can be observed
that our proposed Mixed-augmentations strategy consistently
outperforms the TF-IDF and WordNet strategies across various
metrics in both in-domain and cross-domain scenarios. We
attribute this improvement to the limitations of the TF-IDF
and WordNet strategies, which perform text augmentation at
the word level. Such word-level replacements provide limited
enhancement to the semantic richness of the text. In contrast,
our Mixed-augmentations strategy operates directly in the
semantic space, thereby leading to more robust augmentation.

D. Analysis on Hyper-parameters

In the following, we conduct hyper-parameter tuning ex-
periments to investigate and discuss the effects of different
hyper-parameters on the model performance. We fix the other
hyper-parameters in the full model in each tuning experiment.

1) The number of candidates N in instance replacement:
We first show the effect of the number of candidates N in
the instance replacement. We select the number of candidates
N from values {1, 3, 5, 7, 10}. The results are shown in
Table VI. When N is 5, the model performs better in most
metrics. As N continues to increase, the model performance
starts to deteriorate since augmented text samples contain texts
that are far away from the original text so that the model can
learn an accurate “text-to-text” conversion.

2) The variance σ2 of noise in embedding augmentation:
In Table VII, we present the results under different variances.
We find that the model performance is sensitive to the variance
scale. As the variance increases, the model performance im-
proves progressively, suggesting that appropriate noise applied
to the text embedding can significantly enhance the generaliza-
tion ability of the model and weaken the gap between training
stage and inference stage. However, when the variance exceeds
1 × 10−2, the model performance decreases rapidly due to
excessive noise.

3) The length K of soft prompt: We select the number of
length K from values {1, 5, 10, 15, 20}. Table VIII shows the
experimental results under different lengths K. We can find
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TABLE IX
THE NUMBER OF AUDIO EVENTS M IN ACOUSTIC-AWARE PROMPT

M ROUGEL CIDEr METEOR SPICE

1 33.8 ± 0.37 27.6 ± 0.98 15.0 ± 0.16 8.4 ± 1.70
2 33.6 ± 0.64 28.3 ± 0.47 15.3 ± 0.22 9.9 ± 0.15
3 33.9 ± 0.69 30.5 ± 1.56 15.7 ± 0.33 10.1 ± 0.38
4 35.3 ± 0.27 34.3 ± 0.71 16.1 ± 0.13 10.4 ± 0.21
5 35.2 ± 0.29 34.1 ± 0.67 16.3 ± 0.18 10.5 ± 0.21
7 34.8 ± 0.76 32.3 ± 1.22 15.8 ± 0.30 10.3 ± 0.33

10 34.1 ± 0.20 31.5 ± 0.59 15.3 ± 0.27 10.1 ± 0.14

TABLE X
THE RATE β OF EVENT LABEL DROPOUT

β ROUGEL CIDEr METEOR SPICE

0 36.3 ± 0.64 34.7 ± 0.21 16.9 ± 0.38 11.4 ± 0.20
0.2 36.7 ± 0.24 36.0 ± 0.68 17.1 ± 0.11 11.6 ± 0.25
0.4 37.3 ± 0.12 39.9 ± 0.21 17.2 ± 0.08 11.7 ± 0.18
0.6 37.5 ± 0.17 40.3 ± 0.47 17.3 ± 0.17 11.7 ± 0.19
0.8 36.7 ± 0.56 37.5 ± 0.74 17.2 ± 0.29 11.6 ± 0.42
1 36.1 ± 0.41 35.4 ± 0.56 16.3 ± 0.19 11.2 ± 0.16

that the best performance is achieved in almost all metrics
when K is 10. When K is 1, the inferior results are achieved
because of the limited expressiveness of the model.

4) The number of audio events M in acoustic-aware
prompt: Table IX presents experimental results using different
audio event numbers M . The model performance is the best
when we set M to 4 or 5. When M is less than 4, the model
performance improves with increasing M due to more acoustic
information guidance. However, when M is greater than 5, the
performance of the model decreases due to the increase in the
irrelevance of the retrieved sound events.

5) The rate β of event label dropout: Table X demonstrates
the effect of different dropout rate β on the performance.
We can see that the CIDEr score gradually increases as
β increases, indicating that dropout can prevent the model
from relying heavily on the audio events. When β exceeds
0.6, the model performance decreases as useful audio events
information is discarded so the model cannot leverage the
guidance.

E. Multilingual Audio Captioning

In addition, since only text is involved in the training stage,
we can more easily use advanced language-based tools to
investigate the potential applications of our proposed method,
such as multilingual audio captioning, multi-styled audio cap-
tioning (literary style, children’s style, etc.)

For example, when it comes to multilingual captioning sys-
tems, we use the Mistral [55] large language model, which is
a multilingual pre-trained text generation model with 7 billion
parameters7, to replace the GPT-2 as a language decoder for
multilingual audio captioning. We use the DeepL8 to translate
the Clotho English text data into different languages (Chinese,
French). The additional language token L (e.g., <en>, <fr>)
is fed into the language decoder with acoustic-aware prompt

7https://huggingface.co/mistralai/Mistral-7B-v0.1
8https://www.deepl.com/

H and soft prompt S to generate language-specific audio
captions.

We conduct experiments as shown in Table XI, where
the model configurations for the ZS-Base Model and ZS-Full
Model are similar to those in the ablation studies (Table V),
with the difference being the use of Mistral as the language
decoder to generate multilingual audio captioning. Our pro-
posed method, the ZS-Full Model, achieves comparable results
with the fully supervised method in most metrics and even
achieves better results in English compared to the experimental
results in Table II. We believe that Mistral has more powerful
text generation capabilities compared to GPT-2, and therefore
can exploit multimodal semantic information and generate
descriptive text more accurately. While the multilingual train-
ing data is three times the size of the monolingual data due
to translations, the performance improvement is not solely
due to the larger dataset. Given the inherent challenges of
multilingual audio captioning, we attribute the better results
to Mistral’s stronger modeling capabilities rather than just
the increased data size. In addition, the ZS-Base Model still
achieves inferior performance in all the metrics compared
to our proposed method, the ZS-Full Model, which demon-
strates that our proposed mixed-augmentation strategy and
the auditory-aware retrieval strategy can also improve the
generalization performance of zero-shot audio captioning in
the multi-lingual scenario.

F. Qualitative Analysis
1) In-domain Audio Captioning: Table XII shows the visu-

alization results for the AudioCaps and Clotho datasets in the
in-domain setting, where red and blue are the sound events
objects and their actions behavior, respectively. The last row
is the retrieved audio events in the acoustic-aware prompts.
We can find that benefiting from the guidance provided by
the acoustic-aware prompt and the improvement of model’s
generalization ability provided by the mixed-augmentations
strategy, our proposed zero-shot method does not use any
paired audio-text data for training, but can still accurately
recognize the audio events and describe the contents of the
audio clip during inference. In addition, the event label dropout
can mitigate the over-reliance of the model on prompts: in the
fourth sample, the retrieved sound events provide irrelevant
information (‘country’, ‘field recording’, and ‘noise’), but the
model manages to generate accurate descriptions, overcoming
the interference of noisy guidance.

2) Cross-domain Audio Captioning: We also present the
ground truth captions and the generated captions of our
proposed method in the cross-domain setting, shown in Ta-
ble XIII. We can observe that the training corpus has a
tremendous impact on the style of the generated text. For
instance, in the second sample, the training set of AudioCaps
contains lots of short, generalized text, which results in concise
captions. In the third sample, the text generated by ChatGPT
results in speculative descriptions “demanding attention from
its passengers”.

3) Multilingual Audio Captioning: Table XIV shows the
samples of English, French, and Chinese audio captions gen-
erated by our proposed model. Our method can generate

https://huggingface.co/mistralai/Mistral-7B-v0.1
https://www.deepl.com/
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TABLE XI
THE IN-DOMAIN EXPERIMENTAL RESULTS ON MULTILINGUAL AUDIO CAPTIONING

Setting English French Chinese

ROUGEL CIDEr METEOR ROUGEL CIDEr METEOR ROUGEL CIDEr METEOR
Supervised Model 37.9 ± 0.28 41.8 ± 1.31 17.6 ± 0.21 29.8 ± 2.81 29.3 ± 2.76 13.4 ± 1.22 28.2 ± 0.94 20.6 ± 1.58 14.6 ± 0.33

ZS-Base Model 32.3 ± 0.82 24.4 ± 1.18 14.3 ± 0.51 26.0 ± 0.56 18.5 ± 1.46 12.4 ± 0.35 25.5 ± 1.06 15.7 ± 2.34 13.9 ± 0.36
ZS-Full Model 37.7 ± 0.44 42.1 ± 0.50 17.6 ± 0.13 29.6 ± 2.84 28.6 ± 3.25 13.5 ± 1.29 27.9 ± 0.52 20.4 ± 0.34 14.3 ± 0.19

TABLE XII
THE SAMPLE RESULTS OF THE IN-DOMAIN AUDIO CAPTIONING

Sample AudioCaps Clotho

YqeSl7YZAfs4.wav YonBZOH88OYs.wav t34t trafik[1].wav Ronda - The Old Shrine - La antigua
Ermita.wav

Ground Truth faucet running and a man speaks repeated bursts of spray car horns honk in traffic and people
shout in the background

birds are singing while people talk in
the background

Prediction a man is speaking and water is
running from a faucet

spraying and hissing cars are honking their horns and
people are talking in the background

birds are chirping and people are
talking in the background

Audio Events water tap, faucet, sink (filling or
washing), bathtub (filling or

washing), male speech, man speaking

spray, hiss, air brake, steam vehicle horn, car horn, honking,
honk, air horn, truck horn, traffic

noise, roadway noise

country, bird, field recording, noise

TABLE XIII
THE SAMPLE RESULTS OF THE CROSS-DOMAIN AUDIO CAPTIONING

Sample Clotho =⇒ AudioCaps AudioCaps =⇒ Clotho ChatGPT =⇒ AudioCaps WavCaps =⇒ Clotho

YfBYDJWChe5c.wav Blade Big.wav YwoadpeAGHUQ.wav steam train 05.wav
Ground Truth a person snoring metal sliding together such as swords

or knives
an emergency siren blaring steadily a person talks on board a train while

it rattles along the tracks
Prediction a person is snoring clanking and clanking an ambulance siren wails urgently,

demanding attention from its
passengers

a train is moving on a track with a
clickety-clack sound

Audio Events snoring, snort, babbling, groan dishes, pots, and pans, cutlery,
silverware, scrape, heavy metal

fire engine, fire truck (siren),
emergency vehicle, ambulance (siren)

train, railroad car, train wagon,
clickety-clack

TABLE XIV
THE SAMPLE RESULTS OF THE MULTILINGUAL AUDIO CAPTIONING

Sample enoesque-Thunder and Rain 1.wav Pencil Writing.wav

Ground Truth rain starts pouring down and
thunder makes a boom

a person writes several words on
a chalkboard

English thunder is rumbling and rain is
falling

a person is writing on a
chalkboard with chalk

French la pluie tombe sur le sol à un
rythme régul.

quelqu’un écrit sur un tableau

Chinese 大雨倾盆而下 有人在黑板上写字

descriptive text for the corresponding audio in an end-to-end
process, regardless of the language, providing a solid basis for
applying the multilingual audio captioning method.

VI. CONCLUSION

We have presented a novel zero-shot audio captioning
method that does not employ human-labeled audio-text paired
data but only uses the text corpus for model training. Our
proposed method avoids the reliance on highly costly paired
data. To enhance the model’s generalization ability during
the transition from text-to-text generation to audio-to-text
generation and to improve the cross-domain performance of
the model, we devise a mixed-augmentation strategy and
a retrieval-based acoustic-aware prompt strategy. Extensive
experiments were conducted on AudioCaps and Clotho to
demonstrate the effectiveness of our proposed method. Our
proposed method performs better on most metrics for the in-
domain setting than other zero-shot audio captioning methods.
In the cross-domain setting, our proposed method outperforms
the compared methods in all metrics, including both fully

supervised and zero-shot audio captioning methods. Moreover,
our proposed method shows the potential of multilingual audio
captioning. Experimental results show that our method can
generate multilingual descriptive text for input audio in an
end-to-end style.

Our proposed method relies on the multimodal modeling
abilities of CLAP. Its performance on downstream tasks,
including audio captioning, is influenced by CLAP’s ability
in multimodal modeling [56]. Therefore, improving CLAP’s
training strategy to enhance its modeling ability is an exciting
future direction of research. Other potential directions include
exploring the effectiveness of our proposed method in other
audio-text multimodal tasks, such as Music Captioning and
Audio Question Answering, and studying multilingual and
multi-styled methods to promote the democratization of audio
captioning.
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APPENDIX A
PROMPT TEMPLATES FOR IN-CONTEXT LEARNING

In this appendix, we describe the prompt template used
to generate audio captions through in-context learning. The
purpose of the template is to instruct the language model
to generate high-quality audio descriptions based on a few
examples provided in the prompt.

TABLE XV
THE PROMPT TEMPLATE FOR AUDIO CAPTION

Prompt Template
Generate the sentences describing the content of the audio.
Each sentence should be 25 words or less and focus solely on the audio aspect.
Do not include words describing visual objects, such as size, shape, color, etc.
Each sentence should describe one or several audio events.
The sentences should be similar in style and content to the following examples.
Examples:{Example Captions}
Output Caption:

Table XV presents the prompt template used to generate au-
dio captions, where Example Captions are randomly selected
audio captions samples from AudioCaps or Clotho. The entire
process of generating audio captions does not require paired
audio-text data, nor does it involve complex data preprocessing
or post-processing steps.
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